Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 11(1): 22543, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526103

ABSTRACT

Microbial contamination is one of the major dreadful problems that raises hospitalization, morbidity and mortality rates globally, which subsequently obstructs socio-economic progress. The continuous misuse and overutilization of antibiotics participate mainly in the emergence of microbial resistance. To circumvent such a multidrug-resistance phenomenon, well-defined nanocomposite structures have recently been employed. In the current study, a facile, novel and cost-effective approach was applied to synthesize Ag@Ag2O core-shell nanocomposites (NCs) via chemical method. Several techniques were used to determine the structural, morphological, and optical characteristics of the as-prepared NCs. XRD, Raman, FTIR, XPS and SAED analysis revealed a crystalline hybrid structure of Ag core and Ag2O shell. Besides, SEM and HRTEM micrographs depicted spherical nanoparticles with size range of 19-60 nm. Additionally, zeta potential and fluorescence spectra illustrated aggregated nature of Ag@Ag2O NCs by - 5.34 mV with fluorescence emission peak at 498 nm. Ag@Ag2O NCs exhibited higher antimicrobial, antibiofilm, and algicidal activity in dose-dependent behavior. Interestingly, a remarkable mycocidal potency by 50 µg of Ag@Ag2O NCs against Candida albican; implying promising activity against COVID-19 white fungal post-infections. Through assessing cytotoxicity, Ag@Ag2O NCs exhibited higher safety against Vero cells than bulk silver nitrate by more than 100-fold.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Nanocomposites/chemistry , Oxides/chemistry , Silver Compounds/chemistry , Animals , Anti-Infective Agents/chemical synthesis , Candida albicans/drug effects , Cell Survival/drug effects , Chlorella vulgaris/drug effects , Chlorocebus aethiops , Disinfectants/chemical synthesis , Disinfectants/chemistry , Disinfectants/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Metal Nanoparticles/chemistry , Oxides/chemical synthesis , Pseudomonas aeruginosa/drug effects , Silver Compounds/chemical synthesis , Silver Nitrate/pharmacology , Staphylococcus aureus/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL